260 research outputs found

    High-resolution IR and radio observations of AGB stars

    Get PDF
    Aims. We present the results of observations with interferometers of a sample of pulsating asymptotic giant branch (AGB) stars in the infrared and at radio wavelengths. The goal of these observations is to explore the extended stellar atmospheres and to establish links between the spatial scales of molecular envelopes and of the dust shell. This is the key to better understand the process of dust formation and therefore of mass loss. Methods. We used the ESO VLTI/MIDI interferometer in the N band, the Keck Interferometer in the K band, and NRAO VLBA observations of SiO masers at 7 mm wavelength of a sample of AGB stars: U Ari, W Cnc, RX Tau, RT Tau, RT Aql, S Ser, and V Mon. The various instruments probe different altitudes of the atmosphere of the AGB stars. They are sensitive to regions below the silicate dust condensation distance and provide the opportunity of finding hints about how dust and its precursors form in the extended atmosphere of an AGB star. The K-band observations are sensitive to water and carbon-monoxyde vapors. Unfortunately, we were only able to observe S Ser in this wavelength range. Results. We find a ratio of 2.2 between the molecular envelope radius and the photospheric size, which is consistent with previous results. The N-band observations are mostly sensitive to vapors of SiO and water and to dust (alumina and silicate). The silicate dust shell is fully resolved, and no precise parameters can be deduced from the N-band observations other than a spatial extension of at least 12–16 R⋆ for our sample. The sizes found for the SiO region are consistent with the radii of the SiO maser rings provided by the VLBA observations. The sizes of the alumina and water vapor regions are systematically found to be larger. There is clear evidence that SiO is absent from regions farther from the star where silicate dust condenses. Conclusions. These observations support a possible scenario in which SiO is adsorbed by species such as corundum. An alternative explanation could be that SiO has chemically disappeared at this range of distances

    New Constraints on Companions and Dust within a Few AU of Vega

    Get PDF
    We report on high contrast near-infrared (~2.2 μm) observations of Vega obtained with the Palomar Fiber Nuller, a dual sub-aperture rotating coronagraph installed at the Palomar Hale telescope. The data show consistent astrophysical null depth measurements at the 10^(–3) level or below for three different baseline orientations spanning 60 deg in azimuth, with individual 1σ uncertainties ≤7 × 10^(–4). These high cancellation and accuracy levels translate into a dynamic range greater than 1000:1 inside the diffraction limit of the 5 m telescope beam. Such high contrast performance is unprecedented in the near-infrared and provides improved constraints on Vega's immediate ( 20 to 250 mas, or 0.15 to 2 AU) environment. In particular, our measurements rule out any potential companion in the [0.25-1 AU] region contributing more than 1% of the overall near-infrared stellar flux, with limits as low as 0.2% near 0.6 AU. These are the best upper limits established so far by direct detection for a companion to Vega in this inner region. We also conclude that any dust population contributing a significant (≥1%) near-infrared thermal excess can arise only within 0.2 AU of the star, and that it must consist of much smaller grains than in the solar zodiacal cloud. Dust emission from farther than 2 AU is also not ruled out by our observations, but would have to originate in strong scattering, pointing again to very small grains

    Imaging faint brown dwarf companions close to bright stars with a small, well-corrected telescope aperture

    Get PDF
    We have used our 1.6 m diameter off-axis well-corrected sub-aperture (WCS) on the Palomar Hale telescope in concert with a small inner-working-angle (IWA) phase-mask coronagraph to image the immediate environs of a small number of nearby stars. Test cases included three stars (HD 130948, HD 49197 and HR7672) with known brown dwarf companions at small separations, all of which were detected. We also present the initial detection of a new object close to the nearby young G0V star HD171488. Follow up observations are needed to determine if this object is a bona fide companion, but its flux is consistent with the flux of a young brown dwarf or low mass M star at the same distance as the primary. Interestingly, at small angles our WCS coronagraph demonstrates a limiting detectable contrast comparable to that of extant Lyot coronagraphs on much larger telescopes corrected with current-generation AO systems. This suggests that small apertures corrected to extreme adaptive optics (ExAO) levels can be used to carry out initial surveys for close brown dwarf and stellar companions, leaving followup observations for larger telescopes.Comment: accepted for publication in the Astrophysical Journa

    Improving Interferometric Null Depth Measurements using Statistical Distributions: Theory and First Results with the Palomar Fiber Nuller

    Get PDF
    A new "self-calibrated" statistical analysis method has been developed for the reduction of nulling interferometry data. The idea is to use the statistical distributions of the fluctuating null depth and beam intensities to retrieve the astrophysical null depth (or equivalently the object's visibility) in the presence of fast atmospheric fluctuations. The approach yields an accuracy much better (about an order of magnitude) than is presently possible with standard data reduction methods, because the astrophysical null depth accuracy is no longer limited by the magnitude of the instrumental phase and intensity errors but by uncertainties on their probability distributions. This approach was tested on the sky with the two-aperture fiber nulling instrument mounted on the Palomar Hale telescope. Using our new data analysis approach alone-and no observations of calibrators-we find that error bars on the astrophysical null depth as low as a few 10-4 can be obtained in the near-infrared, which means that null depths lower than 10-3 can be reliably measured. This statistical analysis is not specific to our instrument and may be applicable to other interferometers

    Exploring Intermediate (5-40 au) Scales around AB Aurigae with the Palomar Fiber Nuller

    Get PDF
    We report on recent Ks-band interferometric observations of the young pre-main-sequence star AB Aurigae obtained with the Palomar Fiber Nuller (PFN). Reaching a contrast of a few 10^−4 inside a field of view extending from 35 to 275 mas (5–40 AU at AB Aur's distance), the PFN is able to explore angular scales that are intermediate between those accessed by coronagraphic imaging and long baseline interferometry. This intermediate region is of special interest given that many young stellar objects are believed to harbor extended halos at such angular scales. Using destructive interference (nulling) between two sub-apertures of the Palomar 200 inch telescope and rotating the telescope pupil, we measured a resolved circumstellar excess at all probed azimuth angles. The astrophysical null measured over the full rotation is fairly constant, with a mean value of 1.52%, and a slight additional azimuthal modulation of ±0.2%. The isotropic astrophysical null is indicative of circumstellar emission dominated by an azimuthally extended source, possibly a halo, or one or more rings of dust, accounting for several percent of the total Ks-band flux. The modest azimuthal variation may be explained by some skewness or anisotropy of the spatially extended source, e.g., an elliptical or spiral geometry, or clumping, but it could also be due to the presence of a point source located at a separation of ~120 mas (17 AU) with ~6 × 10^−3 of the stellar flux. We combine our results with previous Infrared Optical Telescope Array observations of AB Aur at H band, and demonstrate that a dust ring located at ~30 mas (4.3 AU) represents the best-fitting model to explain both sets of visibilities. We are also able to test a few previously hypothesized models of the incoherent component evident at longer interferometric baselines

    Models of the η Corvi Debris Disk from the Keck Interferometer, Spitzer, and Herschel

    Get PDF
    Debris disks are signposts of analogs to small-body populations of the solar system, often, however, with much higher masses and dust production rates. The disk associated with the nearby star η Crv is especially striking, as it shows strong mid- and far-infrared excesses despite an age of ~1.4 Gyr. We undertake constructing a consistent model of the system that can explain a diverse collection of spatial and spectral data. We analyze Keck Interferometer Nuller measurements and revisit Spitzer and additional spectrophotometric data, as well as resolved Herschel images, to determine the dust spatial distribution in the inner exozodi and in the outer belt. We model in detail the two-component disk and the dust properties from the sub-AU scale to the outermost regions by fitting simultaneously all measurements against a large parameter space. The properties of the cold belt are consistent with a collisional cascade in a reservoir of ice-free planetesimals at 133 AU. It shows marginal evidence for asymmetries along the major axis. KIN enables us to establish that the warm dust consists of a ring that peaks between 0.2 and 0.8 AU. To reconcile this location with the ~400 K dust temperature, very high albedo dust must be invoked, and a distribution of forsterite grains starting from micron sizes satisfies this criterion, while providing an excellent fit to the spectrum. We discuss additional constraints from the LBTI and near-infrared spectra, and we present predictions of what James Webb Space Telescope can unveil about this unusual object and whether it can detect unseen planets

    Mid-infrared laser light nulling experiment using single-mode conductive waveguides

    Full text link
    Aims: In the context of space interferometry missions devoted to the search of exo-Earths, this paper investigates the capabilities of new single mode conductive waveguides at providing modal filtering in an infrared and monochromatic nulling experiment; Methods: A Michelson laser interferometer with a co-axial beam combination scheme at 10.6 microns is used. After introducing a Pi phase shift using a translating mirror, dynamic and static measurements of the nulling ratio are performed in the two cases where modal filtering is implemented and suppressed. No additional active control of the wavefront errors is involved. Results: We achieve on average a statistical nulling ratio of 2.5e-4 with a 1-sigma upper limit of 6e-4, while a best null of 5.6e-5 is obtained in static mode. At the moment, the impact of external vibrations limits our ability to maintain the null to 10 to 20 seconds.; Conclusions: A positive effect of SM conductive waveguide on modal filtering has been observed in this study. Further improvement of the null should be possible with proper mechanical isolation of the setup.Comment: Accepted in A&A, 7 pages, 5 figure

    Interferometric observations of the supergiant stars alpha Orionis and alpha Herculis with FLUOR at IOTA

    Full text link
    We report the observations in the K band of the red supergiant star alpha Orionis and of the bright giant star alpha Herculis with the FLUOR beamcombiner at the IOTA interferometer. The high quality of the data allows us to estimate limb-darkening and derive precise diameters in the K band which combined with bolometric fluxes yield effective temperatures. In the case of Betelgeuse, data collected at high spatial frequency although sparse are compatible with circular symmetry and there is no clear evidence for departure from circular symmetry. We have combined the K band data with interferometric measurements in the L band and at 11.15 micron. The full set of data can be explained if a 2055 K layer with optical depths τK=0.060±0.003\tau_{K}=0.060\pm0.003, τL=0.026±0.002\tau_{L}=0.026\pm0.002 and τ11.15μm=2.33±0.23\tau_{11.15\mu m}=2.33\pm0.23 is added 0.33 R⋆R_{\star} above the photosphere providing a first consistent view of the star in this range of wavelengths. This layer provides a consistent explanation for at least three otherwise puzzling observations: the wavelength variation of apparent diameter, the dramatic difference in limb darkening between the two supergiant stars, and the previously noted reduced effective temperature of supergiants with respect to giants of the same spectral type. Each of these may be simply understood as an artifact due to not accounting for the presence of the upper layer in the data analysis. This consistent picture can be considered strong support for the presence of a sphere of warm water vapor, proposed by Tsuji (2000) when interpreting the spectra of strong molecular lines.Comment: Accepter for publication by Astronomy and Astrophysic

    Extreme adaptive optics imaging with a clear and well-corrected off-axis telescope sub-aperture

    Get PDF
    Rather than using an adaptive optics (AO) system to correct a telescope s entire pupil, it can instead be used to more finely correct a smaller sub-aperture. Indeed, existing AO systems can be used to correct a sub-aperture 1/3 to 1/2 the size of a 5-10 m telescope to extreme adaptive optics (ExAO) levels. We discuss the potential performance of a clear off-axis well-corrected sub-aperture (WCS), and describe our initial imaging results with a 1.5 m diameter WCS on the Palomar Observatory s Hale telescope. These include measured Strehl ratios of 0.92-0.94 in the infrared (2.17 microns), and 0.12 in the B band, the latter allowing a binary of separation 0.34 arc sec to be easily resolved in the blue. Such performance levels enable a variety of novel observational modes, such as infrared ExAO, visible-wavelength AO, and high-contrast coronagraphy. One specific application suggested by the high Strehl ratio stability obtained (1%) is the measurement of planetary transits and eclipses. Also described is a simple dark-hole experiment carried out on a binary star, in which a comatic phase term was applied directly to the deformable mirror, in order to shift the diffraction rings to one side of the point spread function.Comment: accepted by Ap

    Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Get PDF
    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 μ\mum). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
    • …
    corecore